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This paper argues that security design for Open Distributed Processing (ODP)
would benefit from a shift of focus from the infrastructure to individual servers as
the owners and enforcers of security policy. It debates the policy nuances,
mechanisms, and protocol design consequences, that would follow from such a
change of emphasis. In ODP, physically separate systems federate into
heterogeneous networks of unlimited scale, so there can be no central authority, nor
ubiquitous security infrastructure. Servers that offer, trade, supply and consume
services must maintain their own security policies and defend themselves. For
servers to take security policy and enforcement decisions, design is concerned with
how they might seek advice and guidance from higher authority. This contrasts with
an administrator imposed policy on a closed homogeneous network, where an
infrastructure enforces administrator declared access rights to potential clients,
including rights to delegate rights.

1 Introduction

Computer system security originated in the context of single multi-user systems, to be
later refined in the context of closed homogeneous networks. This history has led to a
focus on users: the consumers of service. As we move towards open system federations,
this paper argues that focus should be re-directed towards servers: the suppliers of service.
This amounts to a shift of emphasis, from the demand side, to the supply side of the
computer service economy.

Systems participating in ODP will wish to trade services with other systems, yet
defend themselves against attack from them. This is manifest as systems participate in
open trade of services, with dynamic binding between supplier and consumer. Ultimately,
each system will define its own security policy and control invocations of itself by the
outside world. The logical conclusion from reducing granularity implies individual servers
setting and enforcing their own security policies.

Most emerging ODP frameworks are object-based [2, 13, 14]. Encapsulation is
enforced by the infrastructure, but beyond this: you don't manage objects, objects manage
themselves [4, 25]. Each object is an instance of an abstract type with internal state. Each
maintains its own integrity, and each might also maintain its own security policy, thus
creating secure enclaves. This offers the prospect of dynamically variable security
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policies tailored for individual objects. It also offers scope for local policy enforcement,
including immediate access revocation.

Although different approaches might meet the same ultimate goal, this paper shows
how a subtle change of perspective from user to server can lead to different design
solutions and eventually to different styles of implementation.

2 The Object Model

Activities within objects may invoke operations in interfaces of other objects, but for
later convenience we may refer loosely to objects invoking objects. Object state may only
be changed through invocation of an operation of an interface. Object encapsulation,
necessarily enforced by a host platform, prevents any other form of access. For any given
invocation, the object hosting the invoking activity is a client, and that offering the
interface is a server. Concurrently, an object may respond to multiple clients and initiate
multiple requests for service.

A client requests service by invoking a server Interface Reference (IR) through an
infrastructure call. IRs are created by servers for their own services, and may be passed as
parameters, or returned as results, in IR invocations. Thus, an IR may be created by a
server, returned as a result, passed from object to object along a chain of service, and
finally invoked, making the server the source and ultimate target of IRs.

3 Security Models

When an IR is invoked, the server must check the client's authenticity and authority to
obtain service. These will be decided, respectively, by the server, or a trusted agent of the
server, checking a shared secret presented by the client, and by checking a record that
authority had been granted to the client. The client may have acquired authority by
delegation, in which case the same checks must apply to the delegator. Following various
checks, the server must decide, based on some security policy, whether to grant or deny
access. In all cases, although the server ultimately has control, it may seek advice and
guidance on any aspect of authenticity, authority, or security policy, from trusted third
parties.

A possible model to support this requirement is for a common ancestor of the client
and server in a bootstrapping situation, or a shared authority in inter-domain co-operation,
to retain an access control list (ACL) for the services offered by the server. An ACL entry
would take the form of client identity versus services available. The ancestor would
distribute secrets (usually keys) to the offspring for purposes of authentication. The server
would verify client identity by checking a supplied key. Either this would be done by keys
shared directly between client and server, or by the server consulting a trusted
authentication service that stores keys against identities. In summary, given a service
request by way of a client invocation of an IR, the server action would be to check client
identity using a supplied key and to check client authority by reference to the ACL. In
some cases, such as where no ACL entry exists, the server may need to check the identity
and authority of any delegator, and apply a security policy partially based on delegation
rights.



In an alternative model, the server would create a sealed and signed certificate for
whatever it chooses to regard as a unit of security, and return this with an IR. Each
transfer of the certificate, which would probably, though not necessarily, accompany
transfer of the IR, would similarly be signed. When the IR is invoked, the certificate, with
any accumulated signatures, would be presented as an authority to obtain service. This
certificate behaves like a capability created and issued by the server but with some
essential differences: that, on presentation, the server could check itself as the originator;
that, in the first instance, the certificate is assigned to a specified recipient; and that nested
signatures can be used subsequently to trace any transfers. The server can check
accumulated delegation information against a security policy.

These models are not mutually exclusive. A certificate need not originate from the
server, provided the server has the means to check the authority of the originator with an
ACL entry. Where a certificate is transferred to a recipient that has no ACL entry, that
delegation would have to be confirmed with a signed transfer. Where a certificate is
transferred to a recipient known to have an ACL entry, there would be no need to
authorise the delegation. In all circumstances, the server controls access, even though
reference to higher authority may be needed to make a decision.

This paper will concentrate on the second of the above two models. In effect, the
model allows ACL entries, which might otherwise be maintained by the server, to migrate
through the distributed system. In other words, each server issues identity-based
capabilities for services offered. This neatly reconciles the capability versus ACL
controversy, with both being represented in the same architecture. But it will be argued
that the capability view leads to favourable scaling characteristics, and that the server-
based, rather than infrastructure-based view, produces solutions more suited to servers
defending themselves in an ODP scenario.

Not all security concerns are addressed explicitly in this paper, although the suggested
model would not preclude development of other services, such as audit, non-repudiation,
etc. In particular, confidentiality can be obtained through encryption once keys are
distributed. Denial of service is not addressed: this being a particularly difficult subject
area for most security models. Recovery, either from a breach of security or network
failure is not considered, although decentralisation to servers should lead to designs
resilient to such events.

The next section compares and contrasts these models in greater detail. Later sections
concentrate on the merits and effects of changing emphasis to the server-based view, and
discuss implementation in some object-based architectures, such as ANSA [2, 4]. In the
next section, we contrast the consequences of viewing security from each of the
infrastructure and server perspectives. In a later section, we show the flexibility and ease
with which each object controls its own security policy. We then, mainly as proof of
concept, describe protocols which illustrate how taking the server view leads to a different
style of implementation, and to significant economies of mechanism. The paper concludes
with suggestions for further study.

4 Different Views of Security

In most traditional systems, service access is controlled by a management authority that



applies a central security policy. An example might be a certification authority that hands
out certificates to potential clients as permitted by the policy. The service provider is
expected to supply service on presentation of a valid certificate. For example, in Kerberos
[27], it is the Kerberos server that issues a ticket for a client to use a service, not the
service provider itself. In traditional capability-based systems, such as in CAP and Hydra
(see [18]), and to some extent in Flex [30], a capability for accessing an object is not
issued by the object itself, but by a separate authority, such as the operating system. In
such an infrastructure-based view of security, service access is granted when a certificate
is created. Non-distributed systems, and homogeneous networks, were built on notions of
central control consistent with this view, which still has strong influence in many
frameworks (eg [7/8, 14]).

For systems co-operating within distributed federations, many presumptions in favour
of centralisation have to be reversed. A server-based view is needed, where a service
provider retains control of security policy and decides whether to grant access at the place
and time of supply. The service may seek assistance from other services (eg
authentication, authorisation). In turn, these services may request assistance from other
services, such as to contact similar services in other security domains.

The remainder of this section compares and contrasts the infrastructure-based and
server-based views.

4.1 The Server-based View

In a typical object-based system, a server offers (or advertises) its service through an IR
which is either returned as a result, or passed as a parameter in some other service
invocation. In particular, an IR may be passed to a service broker or trader [3]. A potential
client holding an IR, including a trader, may pass it to other potential clients for later
dynamic binding to the server. IRs may pass along chains of service until finally invoked,
thus leading to a return to the server. An IR may be distributed widely, and copied,
including into different security domains.

This matches closely a model where, for some server chosen unit of security, a server
issues a certificate, to a potential client, which is delegated from client to client until
finally presented as a service request authority. It behaves as a capability that could be
passed with an IR, except for the addition of some semantics that would allow the server
to confirm source, content, and trace delegations.

The server can always decide whether to, and how to, respond to an interface
invocation at the time of invocation. Assuming the server can validate the service chain to
the final client, it can own and apply a security policy. The server does not have to make
the decision completely unaided but may seek help from authentication and authorisation
services. But always the server, and not some infrastructure service, is in control, and the
server decides the assistance to seek and the variations to apply.

Security requirements can be declared by the application designer as part of the
computational object. This may take the form of attributes, declared in an interface, which
cause invocation of further authorisation, authentication, and policy services. This is
consistent with an object model that hides function and data behind interfaces. The
decision coded into the server may be based on many criteria, such as the time of day, or



the physical path of a service chain (assuming such data can also be obtained with validity
guarantees). Special context dependent security constraints, based on object state, could
be added explicitly. Alternatively, a null security policy could be declared which would
imply no additional overhead.

This style of server-based model allows a high degree of autonomy so that servers
may migrate, and servers may be imported into systems, without concern about, or the
server having to conform to, an imposed security infrastructure.

4.2 The Infrastructure-based View

Where security is assumed to be imposed by the infrastructure, a client (including the
user) acquires rights by applying to an authority who decides, based on some security
policy, whether to hand out certificates. Once rights are assigned, the server is expected to
honour any service request for which a valid authority is presented. In this case, the
certificate does not originate from the server, but from an ancestor of, or mentor of, the
server. Certificates may be delegated, but, to decide the validity of delegation, the server
must appeal to a higher authority for access control arbitration.

This view becomes less reasonable as systems participate in larger federations. In
particular, when systems are not controlled by a single authority, but equal peers
co-operate, this view alone may not be implementable. There is always likely to be a
fallback to a server-based view, even though the server in this case may be of rather
macroscopic proportions, such as an entire homogeneous network.

4.3 Infrastructure and Server Views Compared and Contrasted

A chain of service is always cyclic. The loop may be viewed either as starting from a
client and passing through a sequence of servers before returning to the client, or as
starting from a server and passing through a sequence of potential clients before returning
to the server. The difference of emphasis arises from where the loop is broken for
purposes of system design. In both cases, the security manager may decide what goes into
a policy server and how policy servers relate to one another. Workable solutions will
emerge either way, but both views should be considered. The distinction is analogous to
managing the economy: there is only one economy, but for different purposes it is
convenient to view it from either the supply or demand side.

An infrastructure-based solution leads to policies imposed on the server through a
hierarchy of greater and greater authority. A server-based solution leads to servers
submitting themselves to security policies by seeking advice and guidance from wiser and
wiser mentors. It is analogous to a company attempting to impose security through
management decree, but, in the limit, security will only be achieved by individuals
choosing to submit to the policy. In devising solutions, it is necessary to recognise the
power of the individual, or the server. Taking a server-based view can lead to solutions of
greater simplicity, elegance and efficiency.

An important consequence of starting from a server view is that access control is
applied by the supplier at the time and place of potential supply. Starting from a client
view, with an ACL entry presumed to be extant in a policy server, leads to access being



granted by management authority prior to request for supply. Hence, choosing where to
break the service chain loop for purposes of design can lead to different solutions, with
rather different characteristics. For example, where a certificate is granted by a
certification authority, it is difficult (but not impossible) to revoke or vary its provisions
while it is extant (see [8, 15] for various solutions). It is easier to see how to solve this
problem where the server is always the focus of control. In fact, in the general case, other
dynamic changes of security policy may be permitted, since policy is not applied until
service is sought.

A further difference emerges when using the traditional access matrix [16] to examine

the position. In the access matrix, a subject is an active entity accessing a passive object4,
such as a file. In an object-based model, the object is an active interface with implied
semantics. Problems arise when trying to decide the subject. Access rights represent the
rights of a subject to invoke an object interface. From an infrastructure-based view, the
most appropriate choice of subject would appear to be the activity extant on behalf of the
user (ie, a user's delegation) [17]. From a server-based view, the subject is, or is chosen
from, the chain of delegation; it is the security policy encapsulated in the server that
determines the subject. A subject may be one of a number of clients, including end users,
or many clients in association, where each object is also a possible subject. This view fits
better with object-based architectures.

5 Implementation from the Server Perspective

This section discusses some system design issues that arise when taking a server-based
view of security. In particular, it discusses how a server-based implementation could be
realised in object-based architectures evolving in a direction consistent with this paper,
ANSA [2, 4] being one example. Protocols are described later.

5.1 Service Traders - Offers and Inquiries

A creator of a server will hold an IR to at least one server interface. The precise
engineering for this is not of concern to this paper. The creator will also be returned an
access certificate (AC) to authorise access to a service represented by the IR. This AC
need not necessarily authorise the creator, but may authorise a client for whom the creator
is acting. When the IR is invoked, other IRs and ACs may be returned to authorise access
to other clients, probably for different services. To do this, the server may well act as a
client, seeking guidance from other servers. Servers may register IRs and ACs with, and
advertise through, a trader, which may, such as in ANSA [3], allow federation over
multiple domains. A trader acts as a broker between service offers and inquiries. The
trader itself is a server, and will have issued IRs to allow invocation of its trading services.

5.2 Propagation of Service Offers

From a server-based view, all service offers start from, and end at, a server. For the

4 Subject and object in italics are used in their historical context of the access matrix, as per the
reference. Object should not be confused with object as in object-based technologies.



moment, ignore issues of object birth and object death, and assume that a client has
requested a service (for which it must have an IR to invoke and an AC to present). The
server wishes to create and return an IR, and an AC, as part of its response.

An AC associated with a returned IR authorises service to a client whose identity may
not be that of the immediately invoking client. In this context, an identity is a name for an
authentication key that may be retrieved by an authentication service
(if not the client itself) when the IR is invoked.

The server associates with the AC a particular security policy to apply when the IR is
invoked. This is done by embedding a policy identifier in the AC. Associated with this
identifier will be a private policy key stored by the server. The server then computes a
cryptographic seal of the AC with the key and returns the AC together with the seal. In
effect, what is returned is a ticket that allows a request to be made for access to the
interface, but which does not guarantee access. The ticket indicates an assignee, associates
its issue with any special restrictions (ie policy), and is sealed in an unforgeable way with
the private policy key of the server.

The client to whom the AC is issued can present it when requesting service. The
client can also propagate it to another potential client by adding a signature of transfer
(signed with its private key). A transferred AC can be transferred further; each transfer
being very specific about the identity of the intended recipient. This creates a chain of
delegation that can be traced and checked on IR invocation. It does not matter what route
a transfer takes to reach a final client. An intermediate object through which an AC passes
will only be of interest if that object could have had authority to invoke the IR with a
traceable AC delegation. To delegate authority, a delegator must add a signature,
otherwise the AC would be unusable by any further recipients. Possible protocols, and a
format for the signature of transfer, are given in a later protocol section.

It would be possible to embed rights (such as access or transfer rights) in an AC in a
more specific way than the server identifying a policy to apply on IR invocation. As
suggested in [9, 26], it would then be possible for delegators of an AC to restrict or
amplify rights. This may have merit in multi-level access control, where a delegator could
request that a delegatee have a specific clearance before being granted access. However,
when taking a strict server-based view, it may be better to maintain policy entirely within
the server. The server is the final arbiter of policy, so any restrictions placed on route
could only be advisory. The issue is open to debate.

5.3 A Mechanism for Transferring Authority

The integrity of a transfer of authority can be guaranteed with well-known techniques to
sign and/or seal information using cryptographic methods, such as encryption (both
conventional and public-key) and one-way (hash) functions [29]. The communicating
objects may use a third party authentication service to arrange key sharing [21].

A basic sign and seal mechanism can be used to underpin all transfer of authority. It
can be illustrated with a pseudo-random function f with the property that given f and f(m)
it is computationally not feasible to compute m [23]. Thus, given a family of such
functions fk, indexed by key k from a key space, two parties who share k can authenticate

to each other the origin and integrity of m by supplying m and fk(m) as a signature. A



pseudo-random function can be approximated with a one-way hash function H, or an
encryption E. The signature is H(k, m), or Ek(m) (m encrypted with key k). Sometimes,

Ek(H(m)) may suffice. Note that a pair of (m, H(k, m)) is self-identifying in that a server

who knows k can verify the signature. To show that a signature is recent (ie that it is
fresh), m could include a time-stamp or a nonce [10]. Also, if m has traversed a chain of
services, the identities of the services on the chain can be appended to m, and signing
done, by nesting several applications of f. For example, a signature signed with key k1,
and then signed with k2, looks like:

(id2, id1, m, H(k1, id1, m), H(k2, id2, id1, m, H(k1, id1, m))).
The protocols are described later in more detail.

A special case arises when a source and destination coincide. This happens when an
AC created by a server migrates through a chain of service, eventually to be presented as
an authority for service. The same pattern of sign and seal above applies, except in this
case the key is private to the server. This is significant, because the original key used to
create the AC (k1 in the above example) need never be distributed outside the server.
Thus, there is much less risk of disclosure. This is a cyclic version of cascaded
authentication as discussed in [26]. This case merits special attention, because it is the
normal case in a server-based view of security. It is also the most secure since it does not

rely on a shared secret, only a private secret5. Each object maintains its own secrets and
should one be compromised there should be no direct effect on any other. There should
only ever be a need for a server to authenticate a chain of service that it originates.

5.4 Handling Service Requests

When an AC is presented on an IR invocation, the server validates the signatures and
decides how to respond according to a policy. If the server knows the private keys of the
transfer signatures - for example when the signatures are signed with a public-key system,
and the public keys are stored in a public place - the server retrieves the appropriate keys
and re-computes the seal to validate the chain of signatures. In some cases, an
authentication service may be consulted. For example, when using a pseudo-random
function with a private key, the signature of a client may be known only to an
authentication service and not to other objects. Presenting the AC to the authentication
server for validation is itself a delegation of an AC using the same sign and seal
mechanism. Finally, the server validates the request using its own service specific private
key originally used to create the AC.

If the validation is successful, the server knows the chain of delegation from the client
identities embedded in the AC. It may now apply a security policy based, in part, on the
policy identifier originally embedded in the AC. The policy can easily be server specific,
since each server has final responsibility for security in its own domain. Moreover, there
may be further levels of control imposed by the server, based on context dependent
criteria, which may be special to an application, and not necessarily included in a general
model. For example, there may be access policies which depend on time of day, or
relationships between service requests and their originators.

5 "Three may keep a secret if two of them are dead". Benjamin Franklin (1706-1790)



Although a simple single chain of delegation has been illustrated, it is possible for
multiple chains to be created, since any object may transfer authority to multiple
destinations, and may do so with many chains concurrent. A chain of delegation is
therefore not a simple linear structure but a hierarchy, with any object possessing
authority being able to behave as a node in the hierarchy.

Assuming domain managers have exchanged keys, so that their authentication
services may co-operate, trusted gateways may be created to allow security domains to
integrate. When an authentication server is presented with a number of identities and a
nested seal for verification, the authentication server may not hold all the necessary
signatures or keys, in which case assistance from other authentication services may be
needed. This process takes exactly the same pattern as any other requests to an
authentication service. Authentication servers may be equal peers in a federated world. A
request from one authentication service to another will appear the same as any other
client-server request. Authentication may recurse through a chain of authentication
servers, and through a number of security domains.

5.5 Revocation of Transferred Authority

By using an AC to invoke a revocation operation of a server interface, a client within a
chain of transfers can request the server to revoke its subsequent transfers of the AC. A
server (or its agent) would remember node points where a limb of the transfer hierarchy
tree has to be severed. Since signatures are self identifying, the full path of an AC is
known when it finally arrives. Given a request from any client in the path, the server, as
the arbiter of policy, can agree (or indeed refuse) to deny access.

Revocation has been difficult in infrastructure-based models, especially if service is
apparently guaranteed when a certificate is issued [15]. A server-based model supports
revocation well, since access is granted at the point and time of service supply. As a
result, refreshing the security policy cache (eg [8]) is not difficult. Revocation while a
server is in process of supplying service (ie immediate revocation) is also possible. The
implications of this on other aspects of an ODP model (outside a security context) would
need to be considered, although it is unlikely to be worse than an apparently uncontrolled
death of a server.

Compared with an ACL model or a capability model, a signed AC may be thought of
either as an ACL entry that is allowed to migrate, or as a capability that embeds an
identity. For distributed systems, this is an advance on both older models, since allowing
an access list entry to migrate solves a significant scaling problem. A transfer of authority
can happen without immediate reference to the server, since a security policy is applied
only when a service is invoked. Also, all necessary authentication can be done at one
time; again when the service is invoked. Use of identity-based capabilities (suggested in
the ICAP architecture [9]) is useful for purposes of controlling the transfer and revocation
of privilege because the chain of identities reveals the chain of delegation.

6 Control of Security Policy

The unit of security policy represented by an AC is chosen by the server when the AC is



created. When the AC is presented (when an IR is invoked to cause a return to the server)
a chain of delegation becomes available. This allows a range of policies:

• allow access always. This would apply to a service truly open to anyone. A trading
service is an obvious case.
Policy: open access; trust everyone.

• allow access only to the client to whom the AC was originally granted. In this case
no delegation would be permitted by the client first specified.
Policy: trust only those specifically designated.

• allow access only if all clients in a chain of delegation are authentic.
Policy: trust others trusted by those you trust.

• allow access only if the final client in a chain of delegation is authentic, regardless
of the authenticity of any other clients in the chain.
Policy: trust anyone you know to be trustworthy, regardless of his sources.

• allow access only if clients in a chain of delegation are from some pre-defined set
of the local security domain.
Policy: trust a known trustworthy group, but avoid external threats.

• allow access only if clients in a chain of delegation are from some pre-defined set,
where this set could include clients from other security domains.
Policy: trust a known trustworthy group, and allow external threats.

Servers can apply a range of possible discretionary to mandatory policies against
separately chosen units of security policy. The rules are, in effect, built into the server,
although, as has been emphasised before, servers may call upon other servers to obtain
them. Furthermore, these other servers comply with the same model, and set their own
security policies. Hence, policy rules need not be static data structures, but can be
modified dynamically. Other criteria might also apply, including application specific
criteria.

In a server-based view, the society of servers as a whole has a characteristic
behaviour that might be thought of as a system policy. For a system design, the default
case may be to construct all servers to redirect access checks to other policy servers.
Furthermore, the default may be to make this transparent to the application designer, who
may relax this security transparency selectively. Thus, system policy is pervasive in the
design structure, rather than being imposed through an infrastructure.

6.1 Locality of Control and Encapsulation of Security Policy

If an object interface is rigorously defined, then, subject to acceptable levels of reliability
and efficiency, one is concerned with what functions the object performs, not with how it
performs them. Similarly, subject to an audit of the object and its invoked security
services, a client should be concerned with what security policy an object offers; not with
how it offers it. Therefore, a server-based view of security is consistent with an object
model that hides function and data behind interfaces. This leads to the following principle
of locality of control of authority.



In an object-based model a principle of encapsulation applies whereby an object
always controls its own destiny [2, 4, 25]. This may be loosely translated as: you don't
manage objects; objects manage themselves. In the context of security, this would become
a principle of locality (of control) of authority, whereby an object always controls transfer
of authority across its encapsulation boundary. The object, acting as a server, decides
when to create and pass an AC and, in doing so, decides when to pass a service authority
to a potential client. It also decides when to accept an authority as a legitimate request for
service and what policy rules to apply. The principle of locality of authority puts the
server in control of creating tokens of authority, checking legitimacy of access to its
services, and of maintaining its own security policy, although it is not obliged to do these
entirely unaided. This principle of control of flow of authority out of and into an
encapsulation boundary was proposed in [20], although there it was set in the context of a
traditional non-object-based database model.

When an object is created it is formed from a template. An instantiation interface is
invoked to fill in initial values from given parameters. At this point, a shared key for
mutual authentication with the parent is passed to the child, and this, effectively,
establishes the server's separate identity. An identity name may be created, but this only
indicates an authentication key to retrieve.

It is possible for an object to be created such that it would only ever allow access to a
pre-designated client (which need not necessarily be its parent). This implies a security
policy defined when the system is conceived, with no provision for any subsequent
discretionary delegation; hence, this implies a mandatory security policy. At the other
extreme, possession of an AC could always imply a right to delegate. This is a fully
discretionary situation.

There is a midway position where delegation of the AC may not be allowed, but
where the server could interpret it as right for the client to be returned a different AC, to a

different unit of security policy. This implies a limited discretionary policy6. It could be
used to apply different security policies to different classes of service, such as where
management facilities control access to basic service facilities.

Finally, a server could choose to control access to a number of services, and apply a
range of policies to them. Mandatory policies could apply in some cases; fully
discretionary in others. A possible application is to make management services mandatory
but basic services discretionary. It is unlikely that such full generality would be
contemplated in any system design, but this is not precluded.

6.2 The Role of User

The human user is assigned an initial responder object in the system. This object, when
created, has a human identity embodied in it (through a password key in this case), and it
is built to reflect the security policy the human wishes to apply. In effect, the object is a
system clone of the user. Thus, the server-based model accords well with ordinary human

6 Other models with similar objectives (eg [28]) have called this an extended discretionary policy,
but this seems to be a misnomer. An in-between position seems either to be a relaxed mandatory
policy, or a restricted discretionary one.



society, where each individual is responsible for setting and enforcing his/her own
security policy.

The issue is illustrated well in a (most interesting) study by Abadi et al [1], which
considers what characteristics a smart card must have for a human possessing the card to
authenticate mutually with a system, and then further be able to delegate privilege. It
transpires that complete integration of the human would imply a smart card with
functionality equivalent to an object that is fully part of the distributed system. For reverse
authentication - that is, for the human to authenticate the system - the human (smart card)
would need to issue the equivalent of ACs to the system. The study [1] also suggests how
various limited forms of smart card could be used to advantage. Without such a card one
is limited to a user object in the system conducting some form of password authentication
protocol with the user, together with its contingent problems.

7 Protocols

This section presents some example protocols that embody the principles discussed in the
previous sections. It focuses on the benefits of viewing AC authorisation from a server-
based perspective. Also, at various times, usually when a service in invoked, there is a
need to authenticate a chain of authority. A cascaded authentication protocol can be used
for this purpose with the two significant advantages: that a whole chain can be presented
to an authentication service in a single package; and that authorisation and authentication
protocols can be integrated to achieve a significant economy of mechanism. An initial
analysis of the protocols with the BAN/GNY logics [5, 11] shows that the protocols meet
their goals.

7.1 Authentication

It is easier to show the cascaded authentication protocol first from a client point of view,
since this is consistent with how most other papers present the subject. Later discussion
will show how the protocol can be used by a server to authenticate a chain of delegation
that it initiates, and finally satisfies. In both cases there is a loop back to the originator.
Suppose a client C invokes servers S1, S2, etc, then the loop is:
C⇒S1⇒S2⇒S3⇒S→S3→S2→S1→C, where ⇒ is invokes, and → is responds to.
From the view of a server S delegating to clients C1, C2, etc, the loop would be:
S≡C1≡C2≡C3⇒S, where ≡ implies delegates to, and ⇒ again implies invokes.

Figure 1 presents a cascaded invocation example, in which client U invokes server C,
which in turn invokes server S. The following is a generalised and modified version of the
Otway-Rees protocol [22]. In all protocols presented here, H(I, J) indicates a one-way
hash function (OWHF) as discussed earlier, where (I, J) represents a concatenation of all
arguments. K is an authentication (strictly a validation) server; Uk is U's key known to U
and K, and Un is a nonce chosen by U. The steps of the authentication protocol are:
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Fig 1. Asymmetric cascaded authentication

1. U → C : U, H(Uk, C), Un

2. C → S : U, C, H(Ck, S, U, H(Uk, C), Un), Un, Cn

3. S → K : U, C, S, H(Sk, K, U, C, H(Ck, S, U, H(Uk, C), Un), Un, Cn), Un, Cn, Sn

4. K → S : H(Sk, Sn, U), H(Ck, Cn, U), H(Uk, Un, C)

5. S → C : H(Ck, Cn, U), H(Uk, Un, C)

6. C → U : H(Uk, Un, C)

In this protocol C and S act as carriers between U and K. At step 2, K validates that the
message could only have come jointly from both U and C, since only U could create
H(Uk, C), and only C could nest it in H(Ck, S, U, H(Uk, C), Un). Similar logic can be
applied to step 3. At step 6, the message to U still validates that C must have been the
original recipient of the message at step 1 since, after being satisfied about C's identity,
only K could have inserted C's identity and U's nonce in H(Uk, Un, C).

There are two practical differences between this and the Otway-Rees protocol. First,
this protocol uses OWHFs rather than encryption. Second, U's message to K is nested in
C's message to K. In the Otway-Rees protocol a common challenge was used to tie the
two participants' messages together for presentation to K.

It is possible that nesting could introduce a weakness with reversible encryption when
there is predictability in the input data (such as with English text). Many uses of the same
encryption function might help a dictionary attack. This is not a serious concern with
OWHFs. A cryptographic signature could originate from an infinity of possible sources, so
finding the exact inverse is difficult. On the other hand, since an infinity of possible
sources could generate the same signature, a valid seal does not 100% guarantee the
originality of the attached message. But given a sufficiently large signature field, the
chance of erroneous validation would be small. The precise size of field to choose is a
subject of much further debate, and maybe further research, in information theory [eg 23].
A 128 bit cryptographic signature is generally thought to be sufficient for most practical
purposes.

The protocol of Otway-Rees introduced an asymmetry from earlier protocols to

reduce the total number of messages sent7, and the cascaded version presented here has

7 For an example, compare the Otway-Rees [21] with the Needham-Schroeder protocol [22].



similar merit. The introduction of nesting, to replace the common challenge, allows the
protocol to be cascaded easily, as suggested in [26], and, as will be shown, leads to an
economy of mechanism when overlaid with the delegation proposal.

7.2 Delegation

This sub-section presents a server-based view of delegation. An AC originated by a server
is signed and sealed by passing it through a OWHF. At each stage, a signature may be
added, and the package sealed, by nesting again through a OWHF.
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Fig 2: Transfer of authority

Figure 2 shows a server S creating an AC to return to X. The chosen unit of security
policy P of S is indicated by a private key Sp. If X is providing some service to A, X may
request that A's identity be embedded in the AC. The signed and sealed AC would then
take the form P, H(Sp, A).

This AC is now transferred from A to B to C through a chain of delegation for final
presentation by S. At each step a signature is formed by taking the accumulated data,
adding a client authentication key, passing this through a OWHF  to produce a
cryptographic seal, and then adding this seal and the clear-text client identity to the
accumulated data before sending. In full, the steps are:

1. S → X : A, P, H(Sp, A)

2. X → A : A, P, H(Sp, A)

3. A → B : B, A, P, H(Sp, A), H(Ak, B, P, H(Sp, A))

4. B → C : C, B, A, P, H(Sp, A), H(Bk, C, H(Ak, B, P, H(Sp, A)))

5. C → S : S, C, B, A, P, H(Sp, A), H(Ck, S, H(Bk, C, H(Ak, B, P, H(Sp, A))))

When the AC, with all attached signatures, finally returns to S, S can present the whole
package for authentication to a server, K. K uses the clear-text client identities to retrieve
its copies of the relevant shared keys. A transfer from S to K, and possibly from K to K' to
check signatures from another domain, uses the same sign and seal protocol, with
signatures of S and K added at the relevant steps.



7.3 Combining Authentication and Delegation

It may be observed that the mechanisms for authentication and delegation are very
similar, and may be integrated. To overlay the cascaded authentication protocol, only a
nonce need be added at each delegation step. For example, where {.} is the sequence
representing the original AC (given in full in step 1; abbreviated in step 2) the original
delegation from S to X, and then to A, would take the form:

1. S → X : S, {A, P, H(Sp, A)}, H(Sk, X, {A, P, H(Sp, A)}), Sn

2. X → A : S, X, {.}, H(Xk, A, S, H(Sk, X, {.}), Sn), Sn, Xn

A basic transfer of an AC then takes the form:
Source id, Destination id, Data, H(Source key, Destination id, Data), nonce

where Data includes the original P, H(Sp, A).
A delegator of an AC must identify its target client (or possibly client group). When

the service is finally invoked, the server must be able to authenticate the chain of
delegation, from itself, back to itself, and thereby have the identities of potential clients
for applying a security policy. It is this control of export and import of authority out of
and into a server that is significant in considering the design from the server perspective.
However, as was pointed out very early in this paper, it is possible to integrate this with an
ACL-based scheme, where a signature may not necessarily be needed at every step. Also,
for particular system designs, security policies could be fixed so that the full delegation
generality might not always be needed.

8 Key Management

To complete the picture, this section offers a brief discussion of two issues in key
distribution. The first is distribution of a new key to be used by an object A, and known
only to A and the authentication server K. The second is distribution by K of a
conversation key to be used by objects A and B. Both are based on use of the exclusive or
( ⊕ ) operation.

The protocol for distribution of a new key to A is based on a master key Am that is
used only for this purpose. The new key is denoted by Ak. Kt, Kn, and An are nonces.
The protocol is as follows:

1. A → K : An

2. K → A : Kt, Ak⊕H(Am, An, Kt), H(Ak, Kt), Kn

3. A → K : H(Ak, Kn)

4. K → A : H(Ak, An)

In step 2, K generates a new key Ak and uses the master key Am to pass it to A. Since A
knows Am and An, and is given Kt, A can generate x = H(Am, An, Kt) and use this to
recover Ak from x ⊕ (Ak ⊕ H(Am, An, Kt)). A then uses H(Ak, Kt) to check that the
message had not been intercepted, the components split, and an invalid (spoof) field
substituted for Ak ⊕ H(Am, Kt); that is, to check that Ak was the key that K had intended
to send. The nonce An protects against replay of a message 2.



The nonce Kt serves two purposes. First, without Kt the message would read
Ak ⊕ H(Am), and since H(Am) could be used to recover later keys, discovering H(Am)
would be just as useful as discovering Am. Discovering H(Am, Kt) is not so useful, since
a different Kt each time makes H(Am, Kt) a once only value.

Second, Kt ties the message components together to protect against them being
separated and substituted during transmission. This works the same way as the common
challenge in the Otway-Rees protocol introduced in §7.1. Here, however, nesting
components is not an alternative.

If Am is discovered, any keys distributed using Am are also potentially compromised.
However, just knowing Am does not compromise other keys; Am has to be used in
conjunction with recorded protocols. Conversely, if any Ak, or any sequence Ak1, Ak2,
Ak3, etc, is discovered, this cannot compromise Am. This would only allow recovery of
H(Am, Kt), rather than Am, which is of limited concern because of the once only use of
Kt.

Strictly, message 1 is all that is necessary to distribute the new key. The two further
messages, 2 and 3, provide some confirmation of receipt. They protect against earlier
messages not having reached their destinations. Both A and K would have to use an
earlier sub-key until each knows that they both have the new key.

The protocol is necessary and sufficient for the purpose described, although it is of
interest to observe that it is not complete. A does not know what K knows about A's state
of knowledge; that is, {A does not know that {K knows that {A knows that {K knows the
new key}}}}. A complete state of common knowledge (requiring an infinity of
acknowledge responses) is unattainable [see 12].

Slight protocol variations are possible. For example, if, before being prepared to use
the new key, K and A insisted on receipt of messages 2 and 3, the component H(Ak, Kt)
of message 1 could be omitted. Its function concerning validation of Ak would be inherent
in the subsequent messages.

Most authentication protocols demonstrate how a key distribution server distributes a
session key for use between two communicating objects. Although this is not strictly
needed in the model outlined in the paper, it can be a basis for support of confidentiality.
It is presented here using a OWHF [10]. Here Ks is the session or conversation key:

1. A → B : A, H(Ak, B), An

2. B → K : A, B, H(Bk, K, A, H(Ak, B), An), An, Bn

3. K → B : H(Bk, A, Bn)⊕Ks, H(Bk, A, Bn, Ks), H(Ak, B, An)⊕Ks, H(Ak, B, An, Ks)

4. B → A : H(Ak, B, An)⊕Ks, H(Ak, B, An, Ks)

After message 2, it is only K that can check the OWHF, since only K knows both Ak and
Bk. The order of nesting specifies that it must have come by way of A to B to K. K now
has to send a session key Ks back to A and B. The keys Ak and Bk ensure that the
messages in 3 could only have been generated by K. The nonces An and Bn ensure no
replay of earlier messages. Also, only A and B, respectively, could encode H(Ak, B, An)
and H(Bk, A, Bm) to find Ks. H(Ak, B, An, Ks) and H(Bk, A, Bn, Ks) can then be
checked by A and B to ensure that the messages were not interfered with, and that a valid
Ks was recovered. Only A and B could recover the same Ks, so both are happy that they
have a common session key. A further message would be needed if B wished to know that



A really has received Ks, but this is a trivial addition using Ks under H: for example
H(Ks, B).

Various protocols are possible, offering different characteristics, with either A or K
initiating a sequence. Efficiencies may be achieved with protocol components used in
parallel, even though needing more of them. Also there may be variations in the
knowledge states of the communicating objects on protocol completion.

9 Conclusions

As ODP begins to emerge, this paper suggests that it may be more appropriate to consider
security from the perspective of the server, rather than the infrastructure, as has been
traditional. Although both aim at the same ultimate goal, taking a server-based view of the
issues could lead to more appropriate system design solutions.

An ODP environment consists of physically separated systems, integrated into
heterogeneous networks of any scale. In such an environment, the focus must be on the
server defending itself against outside abuse, while still being prepared to trade services
with other systems. Furthermore, as scale increases, it becomes essential for clients to
locate and bind dynamically with outside services. Systems will wish to
co-operate, yet remain autonomous, and subscribe to different security policy regimes.
Looking at the problem from the service supply side, rather than the more traditional user
demand side, suggests how possible solutions might evolve. This suggests prospects of
dynamically variable security policies based on local and fine grain data relationships and
semantics. It suggests scope for local policy enforcement and easy immediate revocation
of privilege.

This paper also discusses how a server-based view could be implemented in an
object-based architecture, such as ANSA [2, 4]. There is scope for further study in this
area, particularly in the design of cryptographic algorithms, key management, and
protocols based on a simple use of cryptographic seals and signatures, rather than
reversible encryption. Such protocols are of interest where legal restrictions would
prevent full encryption of data messages. They are of particular merit where a cycle
allows a protocol based on private, rather than shared keys. Identity-based crypto-systems
[24], and subliminal channels, could also be explored in the context of this paper. These
offer the means to engineer signature schemes based purely on identity information
without shared keys.
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